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As an extension of the NDIF method developed by the authors, a practical analytical

method for the free vibration analysis of a simply supported polygonal plate with

arbitrary shape is proposed. Especially, the method is more effective for plates highly

concave shapes because it employs a sub-domain method dividing the plate of interest

with two sub-plates. The approximate solution of each sub-plate is assumed by linearly

superposing plane waves propagated from edges of the sub-plate. Sub-system matrix

equations for the two sub-plates are extracted by applying the simply supported

boundary condition to the edges of each sub-plate (excepting the common interface of

the two sub-plates). Finally, the sub-system matrix equations is merged into a single

system matrix equation for the entire plate by considering the compatibility condition

that the two sub-plates have the same displacement and slope at the common interface.

The eigenvalues and mode shapes of the single plate are obtained from the determinant

of a system matrix extracted from the entire system matrix equation. It is shown by

several case studies that the proposed method has a good convergence characteristics

and yields accurate eigenvalues and mode shapes, compared with another analytical

method (NDIF method) and FEM (NASTRAN).

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

A vast literature exists for obtaining analytical solution of free vibration of plates having no exact solution, as surveyed
in the authors’ previous papers [1–6], which studied analytical methods for free vibration of arbitrarily shaped plates
(including arbitrarily shaped membranes and acoustic cavities). However, most investigators dealt with plates (or
membranes) with special shapes such as triangle, rectangle, parallelogram, trapezoid, circle and ellipse [7–21].

On the other hand, researches [1–6,22–27] on plates with arbitrary shapes were not frequently carried out compared
with plates with special shapes because most researchers consider that numerical methods such as the finite element
method (FEM) [28] and the boundary element method (BEM) [29,30] are more common and easier way for objects with
arbitrary shapes than analytical methods.

The authors introduced the so-called NDIF method (non-dimensional dynamic influence function method) for free
vibration analysis of arbitrarily shaped membranes (or simply supported plates) [1]. Furthermore, the authors studied
analytical methods for arbitrarily shaped acoustic cavities [2], arbitrarily shaped membranes with highly concave edges [3],
arbitrarily shaped plates with various boundary conditions [4–6] using the NDIF method.
All rights reserved.
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Unlike FEM [28] and BEM [29,30], the NDIF method need no integration procedure in its theoretical formulation because
the boundary of the domain of interest is divided with only nodes (without elements). As a result, the NDIF method needs a
small amount of numerical calculations and yields rapidly converged, highly accurate result. However, the NDIF method
has the week point that it may have an ill-conditioned system matrix when too many nodes are used [6]. The ill-
conditioned system matrix results from a falling-off in independence between basis functions occasioned when two
adjacent nodes are very near to each other.

In this paper, a new analytical method that can overcome the weak point of the NDIF method is studied for free
vibration analysis of arbitrarily shaped polygonal plates. (Note that the newly developed method is not applicable to plates
with curved edges.) The present method is based on the same concept as the NDIF method in assuming an approximate
solution of a plate but it employs basis functions quite different from ones used in the NDIF method. In the present method,
basis functions are given by plane waves traveling from each edge of the plate of interest, which is assumed to be located on
an infinite plate, and the approximate solution is assumed as a linear combination of the plane waves. Note that, in the
NDIF method, basis functions are given by circular waves traveling from each node on the edges of the plate and the
approximate solution is assumed as a linear combination of the circular waves.

In addition, the use of the plane waves for basis functions already attempted in the authors’ previous papers [31–33]
that dealt with free vibration problems of inhomogeneous rectangular membranes [31,32] and a trapezoidal membrane
[33]. It may be said that the proposed approach is to extend a theoretical way used in the previous papers [31–33] to
arbitrarily shaped plates, with having the same concept as the NDIF method in assuming an approximate solution [1–6].

On the other hand, the proposed method employs a sub-domain method of sub-dividing the entire domain into two
sub-domains to effectively solve the free vibration problem of highly concave polygonal plates as well as convex polygonal
plates. System matrix equations for the two sub-domains are obtained by considering the simply supported boundary
condition at edges and they are merged as a single system matrix equation by considering the condition of the continuity in
displacement and slope along the common interface of the two sub-domains. Finally, the natural frequencies and mode
shapes are extracted from a system matrix included in the single system matrix equation. The validity and accuracy of
eigenvalues and mode shapes found by the present method were verified by several case studies, of which the results are
compared with ones given from the NDIF method or FEM (NASTRAN).

2. Theoretical formulation

2.1. Analogy of a simply supported plate to a fixed membrane

The equation of motion for the free flexural vibration of a thin plate is written as

Dr4wþ rs
q2w

qt2
¼ 0, (1)

where w ¼ w(r,t) is the transverse deflection at position vector r, rs is the surface density and D is the flexural rigidity
expressed as D ¼ Eh3/12(1�n2) in terms of Young’s modulus E, Poisson’s ratio n and the plate thickness h. Assuming a
harmonic motion w(r,t) ¼W(r) ejot in which o ¼ 2pf denotes the circular frequency, Eq. (1) leads to

r4W �L4W ¼ 0, (2)

L ¼ ðrso
2=DÞ1=4 (3)

in which L is called a frequency parameter, which is a function of frequency f (Hz).
Since there exists an analogy between the vibration of a polygonal plate with the simply supported boundary condition

and a similarly shaped membrane with fixed edges [8,21], Eq. (2) can be reduced to the membrane equation:

r2W þL2W ¼ 0. (4)

If the ith eigenvalue Li is obtained by solving Eq. (4), the ith natural frequency fi of the polygonal plate of interest may be
calculated by [8,21]

f i ¼
L2

i

2p

ffiffiffiffiffi
D

rs

s
. (5)

2.2. Extraction of system matrix equations for sub-domains

In the study, an analytical method of calculating natural frequencies and mode shapes of concave polygonal plates as
well as convex polygonal plates is proposed by employing a sub-domain method of dividing an entire domain into two
convex domains. As shown in Fig. 1, it is assumed that a fictitious polygonal contour (solid lines) having the same shape as
the concave polygonal plate of interest is located in an infinite plate. Next, the concave plate is divided into two convex
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(I)Γ1

(II)Γ1

Fig. 1. Concave polygonal plate divided into two sub-domains DI and DII; the plate is assumed to be located in an infinite plate.
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Fig. 2. Plane wave generated along the ith edge GðIÞ
i

of domain DI.
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domains DI and DII which adjoin by the common interface Gc . It should be noted that DI is surrounded counterclockwise by

edges GðIÞ1 ;G
ðIÞ
2 ; . . . ;G

ðIÞ
Na where GðIÞNa corresponds to Gc (Na denotes the number of edges of the domain), and that similarly DII

is surrounded counterclockwise by edges GðIIÞ1 ;GðIIÞ2 ; . . . ;GðIIÞ
Nb

where GðIIÞ
Nb

corresponds to Gc (Nb denotes the number of edges

of the domain).
2.2.1. System matrix equation for sub-domain DI

First, consider that a plane wave is generated along the ith edge GðIÞ
i

of domain DI and is propagated into the inside of the
plate as shown in Fig. 2. It should be noted in the figure that the direction of vibration of the plane wave is the same as the
transverse deflection of the plate. Especially in the study, the plane wave is assumed as function

W ðIÞ
i
ðxi; yiÞ ¼

XNs

m¼1

AðiÞm sin
mpxðIÞ

i

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut yðIÞ
i

0
BB@

1
CCA; i ¼ 1;2; . . . ;Na, (6)

where AðiÞm indicates unknown coefficients associated with the vibration amplitude of the plane wave; xðIÞ
i

and yðIÞ
i

denote

local rectangular coordinates defined at edge GðIÞ
i

as shown in Fig. 2; LðIÞ
i

, j, Na and Ns represent the length of edge GðIÞ
i

, the
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Fig. 3. Plane waves simultaneously generated at all edges GðIÞ1 ;G
ðIÞ
2 ; . . . ;G

ðIÞ
Na of domain DI.
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imaginary unit ðj ¼
ffiffiffiffiffiffiffi
�1
p
Þ, the number of edges (including Gc) of the sub-domain and the number of series functions used

for the plane wave, respectively. It is important to note that Eq. (6) exactly satisfies the governing differential equation
(Eq. (4)).

Next, assuming that plane waves are simultaneously generated at all edges GðIÞ1 ;G
ðIÞ
2 ; . . . ;G

ðIÞ
Na as shown in Fig. 3, a

displacement response at point PI in domain DI may be obtained by superposing displacements that have resulted from the
plane waves. Thus, the displacement response at point PI is

W ðIÞ ¼
XNa

i¼1

W ðIÞ
i
ðxðIÞ

i
; yðIÞ

i
Þ ¼

XNa

i¼1

XNs

m¼1

AðiÞm sin
mpxðIÞ

i

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut xðIÞ
i

0
BB@

1
CCA: (7)

In the paper, Eq. (7) is assumed as an approximate solution for the convex plate with the same dimensions as domain DI.
Note that the approximate solution exactly satisfies the governing differential equation (Eq. (4)) because W ðIÞ

i
ðxðIÞ

i
; yðIÞ

i
Þ in

Eq. (7) satisfies that.
The boundary conditions for a plate with simply supported edges are given by [20]

W ¼ 0 (8)

and

q2W

qn2
¼ 0, (9)

where n represents the normal direction from the edges. Thanks to the aforementioned analogy between a simply
supported plates and a fixed membrane, only the displacement-zero condition, Eq. (8), may be considered at the edges.
Although displacements at all edges (with the exception of the common interface Gc) of the convex plate corresponding to
DI are zero, displacements at all edges (including Gc) are provisionally assumed as a linear combination of sine series: i.e.,

W ðIÞðxðIÞr ; y
ðIÞ
r ¼ 0Þ ¼

XNs

n¼1

UðrÞn sin
npxðIÞr

LðIÞr

; r ¼ 1;2; . . . ;Na, (10)

where ðxðIÞr ; y
ðIÞ
r Þ is the local rectangular coordinates defined at the rth edge GðIÞr , UðrÞn denotes unknown coefficients and LðIÞr is

the length of edge GðIÞr .
Applying the provisional boundary condition (Eq. (10)) to the approximate solution (Eq. (7)) at edges GðIÞ1 ;G

ðIÞ
2 ; . . . ;G

ðIÞ
Na

(i.e., at yr ¼ 0 for r ¼ 1;2; . . . ;NaÞ yields

XNa

i¼1

W ðIÞ
i
ðxðIÞ

i
; yðIÞ

i
Þjyr¼0 ¼

XNs

n¼1

UðrÞn sin
npxðIÞr

LðIÞr

; r ¼ 1;2; . . . ;Na. (11)

Next, in order to express Eq. (11) with the single local coordinate system ðxðIÞr ; y
ðIÞ
r Þ a relationship between two local

coordinate systems ðxðIÞr ; y
ðIÞ
r Þ and ðxðIÞ

i
; yðIÞ

i
Þ is assumed by

xðIÞ
i
¼ axðIÞr þ byðIÞr þ e � f ðIÞ

ir
ðxðIÞr ; y

ðIÞ
r Þ, (12)

yðIÞ
i
¼ cxðIÞr þ dyðIÞr þ h � gðIÞ

ir
ðxðIÞr ; y

ðIÞ
r Þ, (13)
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where a, b, c, d, and h are constants. Substituting Eqs. (12, 13) into Eq. (11) leads to

XNa

i¼1

W ðIÞ
i
ðf ðIÞ

ir
ðxr ; yr ¼ 0Þ; gðIÞ

ir
ðxr ; yr ¼ 0ÞÞ ¼

XNs

n¼1

UðrÞn sin
npxðIÞr

LðIÞr

; r ¼ 1;2; . . . ;Na, (14)

which may be concretely expressed as Eq. (15) by substituting Eq. (7) into Eq. (14):

XNa

i¼1

XNs

m¼1

AðiÞm sin
mpf ðIÞ

ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut gðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

0
BB@

1
CCA ¼X

Ns

n¼1

UðrÞn sin
npxðIÞr

LðIÞr

; r ¼ 1;2; . . . ;Na. (15)

It should be noted in the current step that Eq. (15) does not give a complete form because the geometric

variable xðIÞr is included in the equation. In order to eliminate xðIÞr from Eq. (15), the qth basis sin qpxðIÞr =LðIÞr is multiplied

to both sides of the equation and the integration procedure from 0 to LðIÞr is performed along edge GðIÞr . Then, Eq. (15) leads
to

XNa

i¼1

XNs

m¼1

Z LðIÞr

0
AðiÞm sin

mpf ðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut gðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

0
BB@

1
CCA sin

qpxðIÞr

LðIÞr

dxðIÞr

¼
XNs

n¼1

Z LðIÞr

0
UðrÞn sin

npxðIÞr

LðIÞr

sin
qpxðIÞr

LðIÞr

dxðIÞr ; q ¼ 1;2; . . . ;Ns; r ¼ 1;2; . . . ;Na. (16)

Due to the orthogonality of sine series, the right-hand side of Eq. (16) is simplified as

XNs

n¼1

Z LðIÞr

0
UðrÞn sin

npxðIÞr

LðIÞr

sin
qpxðIÞr

LðIÞr

dxðIÞr ¼
LðIÞr

2
UðrÞq (17)

and substituting Eq. (17) into Eq. (16) leads to

XNa

i¼1

XNs

m¼1

AðiÞm
2

LðIÞr

Z LðIÞr

0
sin

mpf ðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut gðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

0
BB@

1
CCAsin

qpxðIÞr

LðIÞr

dxðIÞr ¼ UðrÞq ,

q ¼ 1;2; . . . ;Ns; r ¼ 1;2; . . . ;Na. (18)

For simplicity, Eq. (18) may be rewritten in a simple symbolic form:

XNa

i¼1

XNs

m¼1

AðiÞm SMði;rÞIðq;mÞ

 !
¼ UðrÞq ; q ¼ 1;2; . . . ;Ns; r ¼ 1;2; . . . ;Na; (19)

where SMði;rÞIq;m
is given by

SMði;rÞIq;m
¼

2

LðIÞr

Z LðIÞr

0
sin

mpf ðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut gðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

0
BB@

1
CCA sin

qpxðIÞr

LðIÞr

dxðIÞr . (20)

Furthermore, if separately considering the real edges of the plate ðGðIÞ1 ;G
ðIÞ
2 ; . . . ;G

ðIÞ
Na�1Þ and the common interface ðGðIÞNaÞ,

Eq. (19) may be divided into two equations as follows:

XNa�1

i¼1

XNs

m¼1

AðiÞm SMði;rÞIðq;mÞ

 !
þ
XNs

m¼1

AðNaÞ
m SMði;rÞIðq;mÞ

¼ UðrÞq ; q ¼ 1;2; . . . ;Ns; r ¼ 1;2; . . . ;Na� 1, (21)

XNa�1

i¼1

XNs

m¼1

AðiÞm SMði;NaÞ
Iðq;mÞ

 !
þ
XNs

m¼1

AðNaÞ
m SMðNa;NaÞ

Iðq;mÞ
¼ UðNaÞ

q ; q ¼ 1;2; . . . ;Ns. (22)

Finally, Eqs. (21) and (22) may be simply, respectively, expressed in the form of system matrix equations as follows:

SMðbbÞ
I AðbÞI þ SMðbcÞ

I AðcÞI ¼ UðbÞI , (23)

SMðcbÞ
I AðbÞI þ SMðccÞ

I AðcÞI ¼ UðcÞI , (24)
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DI
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(II)Γi+1
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(II)yi

(II)xi

(II)xi−1

(II)yi+1

(II)yi−1

(II)xi+1

Fig. 4. Plane waves simultaneously generated at all edges GðIIÞ1 ;GðIIÞ2 ; . . . ;GðIIÞ
Nb

of domain DII.
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where superscript b represents the real edges ðGðIÞ1 ;G
ðIÞ
2 ; . . . ;G

ðIÞ
Na�1Þ and superscript c represents the common interface ðGðIÞNaÞ

and

SMðbbÞ
I ¼

SMð1;1ÞI SMð1;2ÞI � � � SMð1;NaÞ
I

SMð2;1ÞI SMð2;2ÞI � � � SMð2;NaÞ
I

..

. ..
. . .

. ..
.

SMðNa;1Þ
I SMðNa;2Þ

I � � � SMðNa�1;Na�1Þ
I

2
6666664

3
7777775

, (25)

SMðbcÞ
I ¼

SMð1;NaÞ
I

SMð2;NaÞ
I

..

.

SMðNa�1;NaÞ
I

2
6666664

3
7777775

, (26)

SMðcbÞ
I ¼ ½SMðNa;1Þ

I SMðNa;2Þ
I � � � SMðNa;Na�1Þ

I �, (27)

SMðccÞ
I ¼ ½SMðNa;NaÞ

I �, (28)

AðbÞI ¼ fA
ð1Þ
I Að2ÞI � � � AðNa�1Þ

I gT, (29)

AðcÞI ¼ fA
ðNaÞ
I gT, (30)

UðbÞI ¼ fU
ð1Þ
I Uð2ÞI � � � UðNa�1Þ

I gT, (31)

UðcÞI ¼ fU
ðNaÞ
I gT. (32)

2.2.2. System matrix equation for sub-domain DII

In the section, a system matrix equation for domain DII is extracted in the same manner as for domain DI. (Note that the
system matrix equations for domain DI are given by Eqs. (23) and (24).) First, it is assumed that plane waves are
simultaneously generated at all edges of domain DII as shown in Fig. 4. A displacement response at point PII in domain DII is
given by superposing displacements that have resulted from the plane waves as follows:

W ðIIÞ ¼
XNb

i¼1

W ðIIÞ
i
ðxðIIÞ

i
; yðIIÞ

i
Þ ¼

XNb

i¼1

XNs

m¼1

BðiÞm sin
mpxðIIÞ

i

LðIIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIIÞ

i

0
@

1
A2

vuuut yðIIÞ
i

0
BB@

1
CCA, (33)

where BðiÞm indicates unknown coefficients associated with the vibration amplitude of the plane wave; xðIIÞ
i

and yðIIÞ
i

denote

local rectangular coordinates defined at edge GðIIÞ
i

as shown in Fig. 4; LðIIÞ
i

and Nb represent the length of edge GðIIÞ
i

and the
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number of edges (including Gc) of domain DII, respectively. Furthermore, displacements at edges (including Gc) of domain
DII are provisionally assumed as (in the same way as for domain DI)

W ðIIÞðxðIIÞr ; yðIIÞr ¼ 0Þ ¼
XNs

n¼1

V ðrÞn sin
npxðIIÞr

LðIIÞr

; r ¼ 1;2; . . . ;Nb, (34)

where ðxðIIÞr ; yðIIÞr Þ is the local rectangular coordinates defined at the rth edge ðGðIIÞr Þ, V ðrÞn denotes unknown coefficients and

LðIIÞr is the length of edge GðIIÞr .
If substituting Eq. (33) into Eq. (34) and repeating the same procedure (Eqs. (11)–(24)) as performed for domain DI to

domain DII, one can obtain two system matrix equations as follows:

SMðbbÞ
II BðbÞII þ SMðbcÞ

II BðcÞII ¼ VðbÞII , (35)

SMðcbÞ
II BðbÞII þ SMðccÞ

II BðcÞII ¼ VðcÞII . (36)

2.3. Assembling of system matrix equations

In the section, in order to obtain a single system matrix for the concave polygonal plate corresponding to the entire
domain (DI+DII), the condition of continuity in displacement and slope at the common interface is considered. Concretely
speaking, the condition of continuity means that displacement and slope at the common interface for DI are equal to those
for DII, respectively.

Prior to considering the condition of continuity, it should be noted in Eqs. (23) and (35) that UðbÞI ¼ 0 and VðbÞII ¼ 0
because displacements are equal to zero at fixed edges of two domains DI and DII excepting the common interface. From
this fact, Eqs. (23) and (35) may be changed into, respectively,

AðbÞI ¼ �SMðbbÞ�1

I SMðbcÞ
I AðcÞI , (37)

BðbÞII ¼ �SMðbbÞ�1

II SMðbcÞ
II BðcÞII . (38)

Substituting Eqs. (37) and (38) into Eqs. (24) and (36) leads to

ð�SMðcbÞ
I SMðbbÞ�1

I MðbcÞ
I þ SMðccÞ

I ÞA
ðcÞ
I ¼ UðcÞI , (39)

ð�SMðcbÞ
II SMðbbÞ�1

II SMðbcÞ
II þ SMðccÞ

II ÞB
ðcÞ
II ¼ VðcÞII . (40)

2.3.1. Condition of continuity in displacement

Thanks to the condition of continuity in displacement at the common interface, it may be said that a displacement at
GðIÞNa ð¼ GcÞ given by Eq. (10) is equal to a displacement at GðIIÞ

Nb
ð¼ GcÞ given by Eq. (34), i.e.,

XNs

n¼1

UðNaÞ
n sin

npxðIÞNa

LðIÞNa

¼
XNs

n¼1

V ðNbÞ
n sin

npxðIIÞ
Nb

LðIÞ
Nb

. (41)

From Eq. (41), the condition of continuity in displacement is reduced to

UðNaÞ
n ¼ ð�1Þnþ1V ðNbÞ

n ; n ¼ 1;2; . . . ;Ns, (42)

where ð�1Þnþ1 results from the fact that the origin and direction of xðIÞNa are different from those of xðIIÞ
Nb

at common interface
Gc . Eq. (42) may be rewritten as matrix form

UðcÞI ¼ ð�1Þnþ1VðcÞII . (43)

If Eq. (43) is applied to Eqs. (39) and (40), one can obtain

ð�SMðcbÞ
I SMðbbÞ�1

I SMðbcÞ
I þ SMðccÞ

I ÞA
ðcÞ
I þ ð�1Þnþ1ðSMðcbÞ

II SMðbbÞ�1

II SMðbcÞ
II � SMðccÞ

II ÞB
ðcÞ
II ¼ 0. (44)

2.3.2. Condition of continuity in slope

First, slopes of the two domains DI and DII at the common interface are, respectively, assumed as a linear combination of
sine series (in the same manner as in Eqs. (10) and (34)), i.e.,

qW ðIÞ

qyðIÞNa

ðxðIÞNa; y
ðIÞ
Na ¼ 0Þ ¼

XNs

n¼1

Ū
ðNaÞ
n sin

npxðIÞNa

LðIÞNa

for DI, (45)
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qW ðIIÞ

qyðIIÞ
Nb

ðxðIIÞ
Nb
; yðIIÞ

Nb
¼ 0Þ ¼

XNs

n¼1

V̄
ðNbÞ
n sin

npxðIIÞ
Nb

LðIIÞ
Nb

for DII, (46)

where Ū
ðNaÞ
n and V̄

ðNbÞ
n denote unknown coefficients. Similarly, if substituting the approximate solution equations (7) and

(33) into Eqs. (45) and (46), respectively, and repeating the same procedure as Eqs. (11)–(22), (45) and (46) lead to,
respectively,

XNa�1

i¼1

XNs

m¼1

AðiÞm SM
ði;NaÞ
Iðq;mÞ

 !
þ
XNs

m¼1

AðNaÞ
m SM

ðNa;NaÞ
Iðq;mÞ

¼ Ū
ðNaÞ
q ; q ¼ 1;2; . . . ;Ns; (47)

XNb�1

i¼1

XNs

m¼1

BðiÞm SM
ði;NbÞ
IIðq;mÞ

 !
þ
XNs

m¼1

BðNbÞ
m SM

ðNb;NbÞ
IIðq;mÞ

¼ V̄
ðNbÞ
q ; q ¼ 1;2; . . . ;Ns; (48)

where SM
ði;NaÞ
Iðq;mÞ

is given by

SMði;NaÞ
Iðq;mÞ

¼
2

LðIÞr

Z LðIÞr

0

q

qxðIÞr

sin
mpf ðIÞ

ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

LðIÞ
i

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

mp
LðIÞ

i

0
@

1
A2

vuuut gðIÞ
ir
ðxðIÞr ; y

ðIÞ
r ¼ 0Þ

0
BB@

1
CCA sin

qpxðIÞr

LðIÞr

2
664

3
775dxðIÞr (49)

and SM
ði;NbÞ
IIðq;mÞ

may be obtained by replacing subscript I and superscript Na in Eq. (49) by II and Nb, respectively.
Furthermore, Eqs. (47) and (48) may be simply, respectively, expressed in the form of system matrix equations as

follows:

SM
ðcbÞ
I AðbÞI þ SM

ðccÞ
I AðcÞI ¼ Ū

ðcÞ
I , (50)

SM
ðcbÞ
II BðbÞII þ SM

ðccÞ
II BðcÞII ¼ V̄

ðcÞ
II , (51)

where Ū
ðcÞ
I ¼ ð�1ÞnV̄

ðcÞ
II due to the condition of continuity in slope in the common interface. Note that (�1)n results from the

fact that the direction of yðIÞNa is opposite to that of yðIIÞ
Nb

as well as the origin and direction of xðIÞNa are different from those of

xðIIÞ
Nb

at common interface Gc .

Next, if substituting Eqs. (37) and (38) into Eqs. (50) and (51) and considering Ū
ðcÞ
I ¼ ð�1ÞnV̄

ðcÞ
II , Eqs. (50) and (51) are

reduced to

ð�SM
ðcbÞ
I SMðbbÞ�1

I SMðbcÞ
I þ SM

ðccÞ
I ÞA

ðcÞ
I þ ð�1ÞnðSM

ðcbÞ
II SMðbbÞ�1

II SMðbcÞ
II � SM

ðccÞ
II ÞB

ðcÞ
II ¼ 0. (52)
2.3.3. System matrix equation of the entire domain

Finally, Eqs. (44) and (52) may take the form of a single matrix equation:

SMðf ÞC ¼ 0, (53)

where the system matrix SM(f), which is a function of the frequency f, and the unknown coefficient vector C are given by

SM ¼
�SMðcbÞ

I SMðbbÞ�1

I SMðbcÞ
I þ SMðccÞ

I ð�1ÞnðSMðcbÞ
II SMðbbÞ�1

II SMðbcÞ
II � SMðccÞ

II Þ

�SM
ðcbÞ
I SMðbbÞ�1

I SMðbcÞ
I þ SM

ðccÞ
I ð�1ÞnðSM

ðcbÞ
II SMðbbÞ�1

II SMðbcÞ
II � SM

ðccÞ
II Þ

2
64

3
75, (54)

C ¼
AðcÞI

BðcÞII

8<
:

9=
;. (55)

On the other hand, the natural frequencies of the concave polygonal plate may be found from the non-trivial condition that
the solution of Eq. (53) should not be zero (i.e., Ca0). As the result, the natural frequencies are given by the roots of the
determinant equation def[SM(f)] ¼ 0.

In addition, the ith mode shape for the ith natural frequencies, fi, may be plotted from Eqs. (7) and (33). For this, AðcÞI and

BðcÞII of the unknown coefficients included in the equations can be obtained from the ith eigenvector obtained from Eq. (53)

when f ¼ fi. In addition, AðbÞI and BðbÞII of the unknown coefficients included in Eqs. (7) and (33) can be calculated by

substituting AðcÞI and BðcÞII into Eqs. (37) and (38), respectively.
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3. Case studies

In this section, several case studies are presented to verify the validity of the proposed method. For each case, the
natural frequencies and mode shapes obtained are compared with those given by another analytical method (NDIF
method) or FEM (NASTRAN). The case studies show that the present method is very accurate and effective, especially when
it is used for a concavely shaped plate with high concavity. Note that the physical properties of plates used in the case
studies are as follows: E ¼ 2.068�1011 N/m2, n ¼ 0.29, h ¼ 0.005 m and r ¼ rs/h ¼ 7820 kg/m3.

3.1. Rectangular plate

In order to verify the accuracy of the proposed method, a rectangular plate with exact natural frequencies is
solved by the method. As shown in Fig. 5, the rectangular plate is intentionally divided into two regions whose interface is
oblique.

Natural frequencies of the rectangular plate are given by the values of the frequency f corresponding to the troughs
that appear in the logarithm determinant curve in Fig. 6 where the curve is given by plotting log |det[SM(f)]| as a function
of f. Natural frequencies for Ns ¼ 4, 6 and 8 by the proposed method are summarized in Table 1 where the exact
natural frequencies and the natural frequencies obtained by FEM (NASTRAN) are also presented. It may be said from
Table 1 that the proposed method gives very accurate natural frequencies although a small number of basis functions are
used, and that the natural frequencies by the proposed method rapidly converge to the exact solutions. (Note that natural
frequencies by FEM using 1089 nodes do not converge to the exact natural frequencies.) On the other hand, although not
plotted here, the mode shapes obtained from the present method and FEM (NASTRAN) are confirmed to be in good
agreement.
1.2 m 

0.
9 

m
 

0.5 m 

0.5 m 

DI DII

Fig. 5. Rectangular plate divided into two domains whose interface is oblique.
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Fig. 6. Logarithm determinant curve of the rectangular plate for Ns ¼ 6.
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Table 1
Comparison of natural frequencies (Hz) of the rectangular plate obtained by the present method, the exact method [34] and FEM.

Natural frequencies Proposed method Exact solution [34] FEM (NASTRAN)

Ns ¼ 4 Ns ¼ 6 Ns ¼ 8 1089 nodes 289 nodes 49 nodes

f1 23.58 23.50 23.50 23.50 23.52 23.58 24.05

f2 48.84 48.89 48.89 48.89 49.01 49.37 52.43

f3 68.15 68.34 68.63 68.63 68.83 69.44 74.50

f4 91.10 91.10 91.20 91.20 91.76 93.47 102.9

f5 93.44 93.66 94.02 94.02 94.32 95.23 108.0

f6 136.4 136.4 136.3 136.3 137.1 139.3 158.4

1.2 m 

0.
9 

m
 

DI DII

0.45 m

0.2 m
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(II)Γ2

(II)Γ3

(II)Γ4

(II)Γ5

Fig. 7. Highly concave plate divided into two domains.

4

5

6

7

8

9

10

30 40 50 60 70 80 90 100 110 120 130 140 150 160
Frequency (Hz)

lo
g|

de
t [

SM
]| 

f1
f2

f6
f4

f3

f5fs1 fs2
fs3

Fig. 8. Logarithm determinant curve of the highly concave plate for Ns ¼ 6 (spurious natural frequencies: fs1 ¼ 60.16, fs2 ¼ 104.5, fs3 ¼ 140.8 Hz).
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3.2. Highly concave plate

In order to show the validity of the proposed method for a concavely shaped plate with high concavity, it is applied to a
rectangular plate with a partially concave region shown in Fig. 7. The determinant curve of log |det[SM(f)]| for Ns ¼ 6 is
shown in Fig. 8 where the troughs (f1,f2,y,f6) represent the first six natural frequencies of the plate. Natural frequencies for
Ns ¼ 4, 6, 8, 10 and 12 are tabulated in Table 2 from which it may be said that these natural frequencies agree well with
those calculated by NDIF method [3] and FEM (NASTRAN). Also, it is confirmed that the proposed method shows an
excellent convergence feature when Ns is increased from Ns ¼ 4 to 12. Although analysis results for more than Ns ¼ 12 are
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Table 2
Comparison of natural frequencies (Hz) of the highly concave rectangular plate obtained by the present method, the NDIF method and FEM.

Natural frequencies Proposed method NDIF method [3] (30 nodes) FEM (NASTRAN)

Ns ¼ 4 Ns ¼ 6 Ns ¼ 8 Ns ¼ 10 Ns ¼ 12 1701 nodes 976 nodes 451 nodes

f1 41.24 40.82 40.68 40.53 40.53 41.39 40.25 40.39 40.68

f2 51.20 51.04 51.04 51.04 51.04 50.88 50.88 51.04 51.20

f3 80.80 81.00 81.20 81.24 81.39 82.00 82.41 82.61 83.21

f4 97.57 97.57 97.57 97.56 97.56 97.35 97.57 97.79 98.23

f5 119.8 119.5 119.5 119.5 119.5 121.5 120.3 120.8 122.0

f6 158.2 157.6 157.4 157.0 157.0 156.3 157.9 158.8 161.3
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not presented, the results also show good convergence characteristics. In addition, although mode shapes by the present
method are omitted in the paper, they are in good agreement with mode shapes by FEM.

On the other hand, it should be noticed that spurious natural frequencies (fs1, fs2 and fs3) as well as the real natural
frequencies (f1, f2,y,f6) of the plate appear in the determinant curve shown in Fig. 8. The spurious natural frequencies may
result from the functional dependence between plane waves used as basis functions. For example, the 1st spurious natural
frequency fs1 ¼ 60.15 Hz, which is calculated as Ls1 ¼ 6.98 by Eq. (5), corresponds to the cut-off frequency of the 2nd plane
wave generated at edge GðIÞ3 or that of the 1st plane wave generated at edge GðIÞ5 . From Eq. (6), the two plane waves may be
expressed as, respectively,

Að3Þ2 sin
2pxðIÞ3

LðIÞ3

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

2p
LðIÞ3

0
@

1
A2

vuuut yðIÞ3

0
BB@

1
CCA, (56)

Að5Þ1 sin
pxðIÞ5

LðIÞ5

exp j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2
�

p
LðIÞ5

0
@

1
A2

vuuut yðIÞ5

0
BB@

1
CCA. (57)

As a result, at cut-off frequency fs1, the two plane waves are reduced to, respectively,

Að3Þ2 sin
2pxðIÞ3

LðIÞ3

, (58)

Að5Þ1 sin
pxðIÞ5

LðIÞ5

. (59)

If considering xðIÞ3 ¼ LðIÞ3 � xðIÞ5 and LðIÞ3 ¼ 2LðIÞ5 , Eqs. (58) and (59) lead to, respectively,

�Að3Þ2 sin
pxðIÞ5

LðIÞ5

, (60)

Að5Þ1 sin
pxðIÞ5

LðIÞ5

. (61)

Finally, it may be confirmed from Eqs. (60) and (61) that the two plane waves are functionally dependent (are equal). Due to
this functional dependence, the system matrix SM becomes singular at the cut-off frequency and, as the result, the spurious
natural frequency is created in the determinant curve shown in Fig. 8.

In the paper, mode shapes are plotted to discern real natural frequencies from spurious ones because meaningless mode
shapes are plotted for spurious natural frequencies. On the other hand, the authors are carrying out an additional study for
effectively removing the spurious natural frequencies in the determinant curve.

3.3. General quadrilateral plate

As shown in Fig. 9, a general quadrilateral plate is divided into two regions and is solved for Ns ¼ 4, 6 and 8. The
logarithm determinant curves for Ns ¼ 6 is shown in Fig. 10 where it may be found that six real natural frequencies and
three spurious ones are marked. As indicated in the previous case study, the spurious natural frequencies result from the
functional dependence between basis functions used and are distinguished from real natural frequencies by plotting mode
shapes. The first six natural frequencies obtained by the proposed method are summarized in Table 3 where it may be seen
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Fig. 10. Logarithm determinant curve of the general quadrilateral plate for Ns ¼ 6 (spurious natural frequencies: fs1 ¼ 4.743, fs2 ¼ 10.67, fs3 ¼ 18.97 Hz).
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Fig. 11. L-shaped plate divided into two domains.

Table 3
Comparison of natural frequencies (Hz) of the general quadrilateral plate obtained by the present method and FEM.

Natural frequencies Proposed method FEM (NASTRAN)

Ns ¼ 4 Ns ¼ 6 Ns ¼ 8 1812 nodes 1060 nodes 438 nodes

f1 4.457 4.557 4.457 4.410 4.410 4.410

f2 10.24 10.24 10.24 10.24 10.24 10.17

f3 11.71 11.71 11.71 11.71 11.71 11.64

f4 17.83 17.83 17.83 17.83 17.73 17.55

f5 19.65 19.65 19.65 19.75 19.65 19.65

f6 23.36 23.47 23.47 23.36 23.36 23.25

x

y

(0.5,2.0)

(2.5,2.5)

(3.0,0.0)(0.0,0.0)

DI

DII

Fig. 9. General quadrilateral plate divided into two domains.
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Table 4
Comparison of natural frequencies (Hz) of the L-shaped plate obtained by the present method, FEM and Milsted’s method [35].

Natural frequencies Proposed method FEM (NASTRAN) (1302 nodes) Milsted’s method [35]

Ns ¼ 8 Ns ¼ 10 Ns ¼ 12

f1 11.79 11.86 11.86 11.94 11.94

f2 19.07 19.07 19.07 18.78 18.78

f3 24.56 24.56 24.56 24.45 24.34

f4 36.67 36.67 36.67 36.54 36.54

f5 38.85 38.99 38.99 39.69 41.96

f6 51.68 51.68 51.68 51.68 N/P

N/P denotes ‘not presented’.
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that the method has an excellent convergence feature as the number of Ns increases and it yields very accurate results close
to those computed by FEM.

3.4. L-shaped plate

A L-shaped plate, which is frequently used as an example of concave plates in other papers, is considered in the section.
The plate is divided into two regions as shown in Fig. 11 and is solved for Ns ¼ 8, 10 and 12. Table 4 shows that the natural
frequencies by the proposed method agree well with those by FEM as well as Milsted’s method [35], which uses a semi-
analytical approach. In Table 4, it may be seen that the proposed has a good convergence feature.

4. Conclusions

An effective, analytical sub-domain method for the free vibration analysis of simply supported polygonal plates with
arbitrary shapes was proposed in the paper. It was revealed that the method shows an excellent convergence feature and
gives accurate natural frequencies and mode shapes for not only general polygonal plates but also highly concave polygonal
plates that rarely have been dealt with by previous researchers. It is expected that the application region of the method
comes up to the free vibration analyses of general polygonal plates with various combinations of the elementary boundary
conditions (simply supported, clamped and free boundary conditions).

On the other hand, the proposed method cannot be directly applied to multiply connected plates and polygonal plates
with holes because it divides the region of the plate of interest into only two regions. In order to overcome this weak point,
an extended way of dividing the region of the plate into many regions will be developed in future research.
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